Notes of CS224n: Natural Language Processing with Deep Learning

Word Embedding

$J(\theta)=-\frac{1}{T}\Sigma^T_{t=1}\Sigma_{-m\le j \le m}\log P(w_{t+j}\vert w_t;\theta)$

We will use 2 vectors per word $w$ to calculate $P(w_{t+j}\vert w_t;\theta)$

  1. $v_w$ when $w$ is a center word
  2. $u_w$ when $w​$ is a context word

$P(o\vert c)=\frac{\exp(u_o^{\top}v_c)}{\Sigma_{w\in V}\exp(u^{\top}_wv_c)}$

Why two vectors?

Easier optimization. Average both at the end.

Two model variants:

  1. Skip-grams(SG)

    Predict context words (position independent) given center word.

  2. Continuous Bag of Words(CBOW)

    Predict center word from (bag of) context words.

Additional efficiency in training: negative sampling.

$arg\max J(\theta)=\frac 1 T\Sigma^T_{t=1}J_t(\theta)$

$J_t(\theta)=\log \sigma(u_o^{\top}v_c)+\Sigma_{i=1}^k \mathbb{E}_{j\sim P(w)}[\log \sigma(-u^{\top}_jv_c)]$

$\sigma(x) = \frac 1 {1+e^{-x}}$

$J_{neg-sample}(o, v_c, U)=-\log (\sigma(u_o^{\top}v_c))-\Sigma ^K_{k=1}\log(\sigma(-u^{\top}_kv_c))$

$P(w)=U(w)^{\frac 3 4}/Z$

Another way: co-occurrence matrix X (full document and SVD) (LSA, HAL)

  • stopwords
    • min(X, t)
    • ignore them all
    • use Pearson correlations instead of counts
  • computational cost of SVD ($O(mn^2)$)
  • hard to incorporate new words

Combining both: GloVe $J(\theta)=\frac 1 2 \Sigma^W_{i,j=1}f(P_{ij})(u_i^{\top}v_j-\log P_{ij})^2$

  • fast training
  • scalable to huge corpora
  • good performance even with small corpus and small vectors

$X_{fianl}=U+V$

Word Vector Analogies: $d=\arg\displaystyle\max_i\frac{(x_b-x_a+x_c)^{\top}x_i}{\lVert x_b-x_a+x_c \rVert}$

Backpropagation

$\frac{\partial}{\partial x}(Wx+b)=W$

$\frac{\partial}{\partial b}(Wx+b)=I$

$\frac{\partial}{\partial u}(u^{\top h})=h^{\top}$

$\frac{\partial}{\partial z}(f(z))=diag(f'(z))$

[downstream gradient] = [upstream gradient] * [local gradient]

Forward: compute result of operation and save intermediate values

Backward: apply chain rule to compute gradient

Classification

Cross Entropy(one-hot target): $H(p,q)=-\Sigma^C_{c=1}p(c)\log q(c)$

Kullback-Leibler(KL) divergence: $H(p, q)=H(p)+D_{KL}(p\Vert q)$ where $D_{KL}(p\Vert q)=\Sigma^C_{c=1}p(c)\log\frac{p(c)}{q(c)}$

What happens when we retrain the word vectors?

Those that are in the training data move around and others stay. Retrain the word vector if you have large dataset.

Overfitting

  • Dropout
  • Regularization
  • Reduce network depth/size
  • Reduce input feature dimensionality
  • Early stopping
  • Max-Norm, Dropconnect, etc.

Underfitting

  • Increase model complexity/size
  • Decreasing regularization effects
  • Reducing Dropout probability
  • Ensemble
  • Data Preprocessing
  • Batch Normalization
  • Curriculum Learning
  • Data Augmentation

Named Entity Recognition

  • Person
  • Location
  • Organizaiton
  • None

Dependency Parsing

Constituency = phrase structure grammar = context-free grammars (CFGs)

  • Bilexical affinities
  • Dependency distance
  • Intervening material
  • Valency of heads

Methods:

  • Dynamic programming
  • Graph algorithms
  • Constraint Satisfaction
  • Greedy Transition-based parsing

Shift-reduce parser

(words in buffer, words in stack, set of parsed dependencies, set of actions)

Handling non-projectivity:

  • Declare defeat
  • Use post-processor
  • Add extra transitions
  • Use a special parsing mechanism

Neural Dependency Parsing

embedded vector representations

  • Vector representation
  • POS tags
  • Arc labels

Model: $y=softmax(U\circ ReLU(Wx+b_1)+ b_2)$

Language Model

How to learn a language model?

Learn a n-gram Language Model.

$P(x^{(t+1)}\vert x^{(t)},\dots,x^{(1)})=P(x^{(t+1)} \vert x^{(t)},\dots,x^{(t-n+2)})=\frac{P(x^{(t+1)}, x^{(t)},\dots,x^{(t-n+2)})}{P(x^{(t)}, x^{(t-1)},\dots,x^{(t-n+2)})}$

Problems:

  • Sparsify: need smoothing and backoff
  • Model size: $O(\exp(n))$

Neural Language Model: $y=softmax(U\circ f(We+b_1)+b_2)$

Improvements:

  • No sparsity problem
  • Model size is $O(n)$

Problems:

  • fixed window is too small
  • enlarging window enlarges $W$
  • window can never be large enough
  • do not share weights across the window

RNN Language Model: $y=softmax(U\circ \sigma(W_hh^{(t-1)}+W_ee^{(t)}+b_1)+b_2)$

Evaluation metric: perplexity $PP=\Pi^T_{t=1}(\frac1{\Sigma^{\vert V\vert}_{j=1}y_j^{(t)}\cdot \hat{y}_j^{(t)}})^{1/T}$

Recurrent Neural Networks (RNN)

Core idea: Apple the same weights repeatedly.

Adcantages:

  • Can process any length input
  • Model size doesn't increase for longer input
  • Step $t$ can use information from many steps back
  • Weights are shared across timesteps

Disadvantages:

  • Slow, hard to parallel
  • In practice, difficult to access information from many steps back

Usage:

  • part-of-speech tagging
  • named entity recognition
  • sentiment analysis (take element-wise max or mean of all hidden states are usually better than final hidden state)
  • generate text by repeated sampling (speech recoginition, machine translation, summarization)

$\hat{y}^{(t)}=softmax(Uh^{(t)}+b_2)\in \Bbb{R}^{\vert V\vert}$

$h^{(t)}=\sigma(W_hh^{(t-1)}+W_ee^{(t)}+b_1)$

$z^{(t)}=W_hh^{(t-1)}+W_ee^{(t)}+b_1$

$\theta^{(t)}=Uh^{(t)}+b_2$

What's the derivative $\frac{\partial J^{(t)}}{\partial W_h}$ ? Leave as a chain rule.

Recall $W_h$ appears at every time step. Caculate the sum of gradients w.r.t. each time it appears.

$\frac{\partial h^{(t)}}{\partial h^{(t-1)}}$ can lead to vanishing or exploding gradients.

$\lVert \frac{\partial h_j}{\partial h_{j-1}}\rVert\le\rVert W^T\rVert\lVert diag[f'(h_{j-1})]\rVert\le\beta_W\beta_h$

$\lVert \frac{\partial h_t}{\partial h_k}\rVert=\lVert \Pi^t_{j=k+1}\frac{\partial h_j}{\partial h_{j-1}}\rVert\le(\beta_W\beta_h)^{t-k}$

Gradient problems:

  • Backprop in RNNs have a recursive gradient call for hidden layer
  • Magnitude of gradients of typical activation functions (sigmoid, relu) lie between 0 and 1. Also depends on repeated multiplicaitons of $W$ matrix
  • If gradient magnitude is large/small, increasing timesteps increases/decreases the final magnitude
  • RNNs fail to learn long term dependencies

How to solve:

  • exploding gradients: gradient clipping(update only when $g\ge threashold$ )
  • vanishing gradients: GRUs or LSTMs or Init + ReLUs

Add L2-norm will help with vanishing gradients?

False. This will put the weights toward 0, which can make it worse.

Add more layers will solve vanishing gradient?

False. This will increase the chance of vanishing gradient problems.

Gated Recurrent Units (GRU)

$z_t=\sigma(W^{(z)}x_t+U^{(z)}h_{t-1})$

$r_t=\sigma(W^{(r)}x_t+U^{(r)}h_{t-1})$

$\tilde{h}_{t} = \tanh(Wx_t + r_t \circ Uh_{t-1})$

$h_t=z_t\circ h_{t-1}+(1-z_t)\circ \tilde{h}_t$

Intuition:

  • high $r_t$ $\implies$ short-term dependencies
  • high $z_t$ $\implies$ long-term dependencies(solves vanishing gradients problem)

If the update gate $z_t$ is close to 1, the net doesn't update its current state significantly?

True. In this case, $h_t\approx \tilde{h}_t$ .

Long-Short-Term-Memories (LSTM)

$i_t=\sigma(W^{(i)}x_t+U^{(i)}h_{t-1})$

$f_t=\sigma(W^{(f)}x_t+U^{(f)}h_{t-1})$

$o_t=\sigma(W^{(o)}x_t+U^{(o)}h_{t-1})$

$\tilde{c}_{t}=\tanh(W^{(c)}x_t+U^{(c)}h_{t-1})$

$c_t=f_t\circ c_{t-1}+i_t\circ \tilde{c}_t$

$h_t=o_t\circ \tanh(c_t)$

Backprop from $c_t$ to $c_{t-1}$ only elementwise multiplication by $f_t$. No longer only depends on $\frac{dh_t}{dh_{t-1}}$.

The entries of $f_t, i_t, o_t$ are non-negative?

True. The range of sigmoid is (0, 1).

Bidirectional RNNs

$y_t=g(U[\overrightarrow{h}_t;\overleftarrow{h}_t]+c)$

Training

  • Initialize recurrent matrices to be orthogonal
  • Initialize other matrices with a sensible(small) scale
  • Initialize forget gate bias to 1: default to remember
  • Use adaptive learning rate algorithms: Adam, AdaDelta, ...
  • Clip the norm of the gradient
  • Either only dropout vertically or learn how to do it right

Machine Translation

  • $P(x\vert y)$ need large amount of parallel data

  • $P(x,a\vert y)$ where $a$ is the alignment

  • $P(y)$ refers to a language model

Statistical Machine Translation:

  • Systems have many separately-designed subcomponents
  • Lots of feature engineering
  • Require compiling and maintaining extra resources
  • Lots of human effort to maintain

Neural Machine Translation (Seq2Seq)

  • Encoder RNN produces an encoding of the source sentence and provides inital hidden state for Decoder RNN

  • Decoder RNN is a langauge model that generates target sentence conditioned on encoding

  • $P(y\vert x)=P(y_1\vert x)P(y_2\vert y1, x)P(y_3\vert y_1,y_2,x)\dots P(y_T\vert y_1,\dots,y_{T-1},x)$

  • Use beam search decoding (on each step of decoder, keep track of the k most probable partial translations)

  • Better performance (more fluent, better use of context, better use of phrase similarities)

  • A single neural network to be optimized end-to-end

  • Requires much less human engineering effort

  • Less interpretable, hard to debug, difficult to control

Use BLEU(Bilingual Evaluation Understudy) to evaluate: compares machine tranlation to human translation and computes a similarity score based on:

  • n-gram precision (usually up to 3 or 4)
  • penalty for too short tranlations

Problems:

  • out-of-vocabulary words
  • domain mismatch
  • low-resource language pairs
  • maintaining context over longer text
  • using common sense is still hard
  • NMT picks up biases in training data
  • uninterpretable systems do strange things

Improve: use attention

  • solves the bottleneck problem
  • helps with vanishing gradient problem
  • provides some interpretability: alignment for free

Seq2Seq model:

  • summarization
  • dialogue
  • parsing
  • code generation

Large-vocab NMT:

  • each time train on a smaller vocab $V' \ll V$
  • test on K most frequent words: unigram prob.

Byte Pair Encoding: most frequent ngram pairs $\to$ a new ngram

Hybrid NMT: mostly at the word level, only go to the character level when needed

Quasi-Recurrent Neural Network (QRNN)

Take the best and parallelizable parts of RNNs and CNNs.

Parallelism computation across time:

$Z=\tanh(W_z*X)$

$F=\sigma(W_f*X)$

$O=\sigma(W_o*X)$

Element-wise gated recurrence for parallelism across channels:

$h_t=f_t\odot h_{t-1}+(1-f_t)\odot z_t$

Attention

Attention scores: $e^t=[s_t^Th_1,\dots,s_t^Th_N]\in\Bbb{R}^N$

$\alpha^t=softmax(e^t)\in\Bbb{R}^N$

$a_t=\Sigma^N_{i=1}\alpha^t_ih_i\in\Bbb{R}^h$

Compute $e\in\Bbb{R}^N$ from $h_1,\dots,h_N\in\Bbb{R}^{d_1}$ and $s\in\Bbb{R}^{d_2}$:

  • Basic dot-product attention: $e_i=s^{\top}h_i\in\Bbb{R}$
  • Multiplicative attention: $e_i=s^{\top}Wh_i\in\Bbb{R}$
  • Additive attention: $e_i=v^{\top}\tanh(W_1h_i+W_2s)\in\Bbb{R}$

Applications:

  • Pointing to words for language modeling: $p(y_i\lvert x_i)=g\thinspace p_{vocab}(y_i\lvert x_i)+(1-g)p_{ptr}(y_i\lvert x_i)$
  • Intra-Decoder attention for summarization
  • Machine Translation with Seq2Seq

Encoder attention:

$e_{ti}=f(h_t^d,h_i^e)=h_t^{d^{\top}}W^e_{attn}h_i^e$

$e'_{ti}=\begin{cases} \exp(e_ti) & \text{if}\space t=1\\frac{\exp(e_{ti})}{\Sigma_{j=1}^{t-1}\exp(e_{ji})} & \text{otherwise} \end{cases}$

$\alpha^e_{ti}=\frac{e'_{ti}}{\Sigma^n_{j=1}e'_{tj}}$

$c_t^e=\Sigma^n_{i=1}\alpha^e_{ti}h^e_i$

Self-attention on decoder:

$e^d_{tt'}=h^{d\top}_tW^d_{attn}h^d_{t'}$

$\alpha^d_{tt'}=\frac{\exp(e^d_{tt'})}{\Sigma^{t-1}_{j=1}\exp(e^d_{tj})}$

$c^d_t=\Sigma^{t-1}_{j=1}\alpha^d_{tj}h^d_j$

Combine softmax and pointers:

$p(u_t=1)=\sigma(W_u[h_t^d\lVert c_t^e\rVert c_t^d]+b_u)$

$p(y_t\lvert u_t=0)=\text{softmax}(W_{out}[h_t^d\lVert c_t^e\rVert c_t^d]+b_{out})$

$p(y_t=x_i\vert u_t=1)=\alpha^e_{ti}$

$p(y_t)=p(u_t=1)p(y_t\vert u_t=1)+p(u_t=0)p(y_t\vert u_t=0)$

Attention is all you need

$A(q, K, V)=\Sigma_i\frac{e_{q\cdot k_i}}{\Sigma_je^{q\cdot k_j}}v_i$

$A(Q,K,V)=softmax(\frac {QK^{\top}}{\sqrt{d_k}})V$

Self-attention and multi-head attention:

$MultiHead(Q,K,V)=Concat(head_1,\dots,head_h)W^o$

where $head_i=Attention(QW_i^Q,KW_i^K,VW_i^V)$

Layer norm:

$\mu^l=\frac1H\Sigma^H_{i=1}a^l_i$

$\sigma^l=\sqrt{\frac1H\Sigma^H_{i=1}(a^l_i-\mu^l)^2}$

$h_i=f(\frac{g_i}{\sigma_i}(a_i-\mu_i)-b_i)$

Added is a positional encoding:

$PE_{pos, 2i}=\sin(pos/10000^{2i/d_{model}})$

$PE_{pos, 2i+1}=\cos(pos/10000^{2i/d_{model}})$

Transformer Decoder: masked decoder self-attention on previously generated outputs.

  • byte-pair encodings
  • checkpoint averaging
  • Adam optimizer with learning rate changes
  • Dropout during training at every layer just before adding residual
  • label smoothing
  • auto-regressive decoding with beam search and length penalties

Convolutional Neural Networks (CNN)

1d discrete convolution generally: $(f*g)[n]=\Sigma_{m=-M}^Mf[n-m]g[m]$

$x_{1:n}=x_1\oplus x_2\oplus\dots\oplus x_n$

$c_i=f(w^{\top}x_{i:i+h-1}+b)$

$\hat{c}=\max{[c_1, c_2, \dots, c_{n-h+1}]}$

$z=[\hat{c}_1, \dots, \hat{c}_m]$

$y=\text{softmax}(W^{(s)}z+b)$

Coreference Resolution

Applications:

  • Full text understanding
  • Machine Translation
  • Bialogue Systems

Two steps:

  • Detect the montions(easy)
    • Pronouns: POS tagging
    • Named entities: NER system
    • Noun pharses: constituency parser
  • Cluster the mentions(hard)

How to deal with these bad mentions?

Keep all mentions as "candidate mentions".

Coreference Models:

  • Mention Pair

    • $J=-\Sigma^N_{i=2}\Sigma^i_{j=1}y_{ij}\log p(m_j, m_i)$, $y_{ij}=1$ if mentions $m_i$ and $m_j$ are coreferent, -1 if otherwise
    • Many mentions only have one clear antecedent, but we want all.
    • Solution: more linguistically plausible
  • Mention Ranking

    • Assign each mention its highest scoring candidate antecedent according to the model

    • $J=\sum^N_{i=2}-\log(\sum^{i-1}_{j=1}\mathbb{1}(y_{ij}=1)p(m_j,m_i))$

    • Non-Neural Coref Model: Features

    • Neural Coref Model

      • Embeddings: previous two words, first word, last word, head word, ... of each mention
      • Distance
      • Document genre
      • Speaker information
    • End-to-End Model

      • Word & character embedding $\to$ BiLSTM $\to$ Attention

      • Do mention detection and coreference end-to-end

        $g_i=[x^{*}_{start(i)},x^{*}_{end(i)},\hat{x}_i,\phi(i)]$

        $\alpha_t=w_{\alpha}\cdot \text{FFNN}_{\alpha}(x^*_t)$

        $a_{i,t}=\frac{\exp(\alpha_t)}{\sum^{end(i)}_{k=start(i)}\exp(\alpha_k)}$

        $\hat{x}_i=\sum^{end(i)}_{t=start(i)}a_{i,t}\cdot x_t$

        $s(i,j)=s_m(i)+s_m(j)+s_a(i,j)$

        $s_m(i)=w_m\cdot \text{FFNN}_m(g_i)$

        $s_a(i,j)=w_a\cdot\text{FFNN}_a([g_i,g_j,g_i\circ g_j,\phi(i,j)])$

  • Clustering

    • Current candidate cluster merges depend on previous ones it already made.
    • Metrics: MUC, CEAF, LEA, B-CUBED, BLANC

Constituency Parsing

Language recursive:

  • helpful in disambiguation
  • helpful for some tasks to refer to specific phrases
  • works better for some tasks to use grammatical tree structure

Recursive neural nets require a tree structure, while recurrent neural nets cannot capture pharses without prefix context and often capture too much of last words in final vector.

Tree Recursive Neural Network

Input: two candidate children's representations

Outpu: the semantic representation if the two nodes are merged and score of how plausible the new node would be

$score = U^{\top}p$

$p=\tanh(W\begin{bmatrix}c_1 \\\ c_2 \end{bmatrix}+b)$, same $W$ parameters at all nodes of the tree

$score(text, tree)=\sum_{n\in nodes(tree)}s_n$

$J=\sum_is(x_i,y_i)-\max_{y\in A(x_i)}(s(x_i,y)+\triangle(y,y_i))$

$\delta^{(l)}=((W^{(l)})^{\top}\delta^{(l+1)})\circ f'(z^{(l)})$

$\frac{\partial}{\partial W^{(l)}}E_R=\delta^{(l+1)}(a^{(l)})^{\top}+\lambda W^{(l)}$

Differences of backprop in recursion and tree structure:

  • sum derivatives of $W$ from all nodes
  • split derivatives at each node
  • add error messages from parent + node itself

Syntactically-Untied RNN

Use different composition matrix for different syntactic environments.

Problem: speed.

Solution: compute score only for a subset of trees coming from a simpler, faster model(PCFG).

Compositional Vector Grammar(CVG): PCFG + TreeRNN

Compositionality Through Recursive Matrix-Vector Spaces

$p=\tanh(W\begin{bmatrix}c_2c_1 \\\ c_1c_2 \end{bmatrix}+b)$

Matrix-Vector RNNs

$p=g(A,B)=W_M\begin{bmatrix}A \\\ B\end{bmatrix}$

Can an MV-RNN learn how a large syntractic context conveys a semantic relationship?

Build a single compositional semantics for the minimal constituent including both terms.

Model overview and memory networks

TreeLSTMs

TreeLSTM = TreeRNN + LSTM

$\tilde{h}_j=\sum_{k\in C(j)}h_k$

$i_j=\sigma(W^{(i)}x_j+U^{(i)}\tilde{h}_j+b^{(i)})$

$f_{jk}=\sigma(W^{(f)}x_j+U^{(f)}h_k+b^{(f)})$

$o_j=\sigma(W^{(o)}x_j+U^{(o)}\tilde{h}_j+b^{(o)})$

$u_j=\tanh(W^{(u)}x_j+U^{(u)}\tilde{h}_j+b^{(u)})$

$c_j=i_j\odot u_j+\sum_{k\in C(j)}f_{jk}\odot c_k$

$h_j=o_j\odot \tanh(c_j)$

  • Maintain the controller (RNN)
  • Sample architecture A with probability $p$
  • Train a child network with architecture A to get accuracy R
  • Compute gradient of $p$ and scale it by R to update the controller

Dynamic Memory Network

  • Input module

    Standard GRU or BiGRU

  • Question module

    $q_t=GRU(v_t, q_{t-1})$

  • Episodic Memory module

    $h_i^t=g_i^tGRU(s_i,h^t_{i-1})+(1-g^t_i)h^t_{i-1}$, last hidden state $m^t$

    gates are activated if sentence relevant to the question or memory.

    $z_i^t=[s_i\circ q;s_i\circ m^{t-1};\lvert s_i-q\rvert;\lvert s_i-m^{t-1}\rvert]$

    $Z^t_i=W^{(2)}\tanh(W^{(1)}z^t_i+b^{(1)})+b^{(2)}$

    $g^t_i=\frac{\exp(Z^t_i)}{\sum^{M_i}_{k=1}\exp(Z^t_k)}$

  • Answer Module

    $a_t=GRU([y_{t-1},q],a_{t-1})$

    $y_t=softmax(W^{(a)}a_t)$

Related work: Neural Turing Machine.

Semi-Supervised Learning

  • Pre-training
    • first train an unsupervised model on unlabeled data, then train it on the labeled data
    • Word2Vec (skip-gram, CBOW, GloVe, etc.)
    • Auto-Encoder
    • Strategies:
      • CoVe
      • ELMo
  • Self-training
    • train the model on the labeled data, then use the model to label the unlabeled data
    • Online self-training: $J(\theta)=CE(y_i,p(y\lvert x_i,\theta))+CE(onehot(argmax(p(y\lvert x_j,\theta))),p(y\lvert x_j,\theta))$
    • hard targets work better than soft targets
  • Consistency regularization
    • $J(\theta)=CE(p(y\lvert x_j,\theta),p(y\lvert x_j+\eta,\theta))$ where $\eta$ is a vector with a random direction and a small magnitude $\epsilon$
    • Apply to NLP:
      • Add noise to the word embedding(noise should be chosen adversarially)
        • Compute the gradient of the loss with respect to the input, then add epsilon times the gradient to the input.
        • $\eta=\epsilon\frac{\nabla_xJ}{\lVert\nabla_xJ\rVert}$
      • Word dropout
        • randomly(10%-20%) replace words in the input with a special REMOVED token: $J(\theta)=CE(p(y\lvert x_j,\theta),p(y\lvert dropwords(x_j), \theta))$
      • Cross-view Consistency
        • train the model across many different views of the input at once
        • instead of running full the model multiple times, add multiple "auxiliary" softmax layers to the model
        • $J(\theta)=\Sigma_{i=1}^kCE(p(y\lvert x_j,\theta),p_{view_i}(y\lvert x_j,\theta))$
        • forward and backward auxiliary softmax layer, attention dropout, etc.

Next

3 equivalent NLP-Complete Super Tasks

  • Language Model
  • Question Answering
  • Dialogue System

Limits for deep NLP:

  • Comprehensive QA
  • Multitask learning
  • Combined multimodel, logical and memory-based reasoning
  • Learning from few examples